Determine convergence or divergence using any method, If you guys could tell me what method you used and show your work that would be really helpful.
∞
Σ 1/n!
n=0
∞
Σ 3/5^n
n=0
Thanks.
∞
Σ 1/n!
n=0
∞
Σ 3/5^n
n=0
Thanks.
-
Hello,
= = = = = = = = = = = = = = = = = = = = = =
The exponential function can be characterized by:
exp(x) = ∑ (n=0→+∞) xⁿ/n!
Hence, if x=1:
exp(1) = ∑ (n=0→+∞) 1ⁿ/n! = ∑ (n=0→+∞) 1/n!
Thus, your first serie converges:
∑ (n=0→+∞) 1/n! = exp(1) = e
= = = = = = = = = = = = = = = = = = = = = =
Let S(n) = 1 + 1/5 + 1/5² + ... + 1/5ⁿ
Then:
S(n) = 1 + 1/5 + 1/5² + ... + 1/5ⁿ
S(n)/5 = 1/5 + 1/5² + 1/5³ + ... + 1/5ⁿ⁺¹
S(n) - S(n)/5 = 1 - 1/5 + 1/5 - 1/5² + ... + 1/5ⁿ - 1/5ⁿ⁺¹
(4/5).S(n) = 1 - 1/5ⁿ⁺¹
S(n) = ¼(5 - 1/5ⁿ)
∑ (n=0→+∞) 1/5ⁿ = Lim (n=0→+∞) S(n)
= Lim (n=0→+∞) ¼(5 - 1/5ⁿ)
= ¼ × Lim (n=0→+∞) (5 - 1/5ⁿ)
= ¼ × 5
= 5/4
Hence:
∑ (n=0→+∞) 3/5ⁿ = 3 × ∑ (n=0→+∞) 1/5ⁿ = 3 × 5/4 = 15/4
Logically,
Dragon.Jade :-)
= = = = = = = = = = = = = = = = = = = = = =
The exponential function can be characterized by:
exp(x) = ∑ (n=0→+∞) xⁿ/n!
Hence, if x=1:
exp(1) = ∑ (n=0→+∞) 1ⁿ/n! = ∑ (n=0→+∞) 1/n!
Thus, your first serie converges:
∑ (n=0→+∞) 1/n! = exp(1) = e
= = = = = = = = = = = = = = = = = = = = = =
Let S(n) = 1 + 1/5 + 1/5² + ... + 1/5ⁿ
Then:
S(n) = 1 + 1/5 + 1/5² + ... + 1/5ⁿ
S(n)/5 = 1/5 + 1/5² + 1/5³ + ... + 1/5ⁿ⁺¹
S(n) - S(n)/5 = 1 - 1/5 + 1/5 - 1/5² + ... + 1/5ⁿ - 1/5ⁿ⁺¹
(4/5).S(n) = 1 - 1/5ⁿ⁺¹
S(n) = ¼(5 - 1/5ⁿ)
∑ (n=0→+∞) 1/5ⁿ = Lim (n=0→+∞) S(n)
= Lim (n=0→+∞) ¼(5 - 1/5ⁿ)
= ¼ × Lim (n=0→+∞) (5 - 1/5ⁿ)
= ¼ × 5
= 5/4
Hence:
∑ (n=0→+∞) 3/5ⁿ = 3 × ∑ (n=0→+∞) 1/5ⁿ = 3 × 5/4 = 15/4
Logically,
Dragon.Jade :-)
-
For all
∞
Σ 1/n! <=
n=0
∞
Σ 1/n^2
n=1
= pi^2/6.
So the first one converges.
N-1
Σ 3/5^n
n=0
= 3 (1-0.2^N)/(1-0.2)
--> 3/0.8
So the second one also converges.
∞
Σ 1/n! <=
n=0
∞
Σ 1/n^2
n=1
= pi^2/6.
So the first one converges.
N-1
Σ 3/5^n
n=0
= 3 (1-0.2^N)/(1-0.2)
--> 3/0.8
So the second one also converges.