Please show work.
-
(sec^2x + csc^2x) = (sec^2x)(csc^2x)
(1/sin^2x+ 1/cos^2x) = right hand
(cos^2x + sin^2x) / (cos^2x)(sin^2x) = right hand
1 / (cos^2x)(sin^2x) = right hand
[1/(cos^2x)] [1/(sin^2x)] = right hand
(scs^2x)(sec^2x) = right hand
(scs^2x)(sec^2x) = (sec^2x)(csc^2x)
(1/sin^2x+ 1/cos^2x) = right hand
(cos^2x + sin^2x) / (cos^2x)(sin^2x) = right hand
1 / (cos^2x)(sin^2x) = right hand
[1/(cos^2x)] [1/(sin^2x)] = right hand
(scs^2x)(sec^2x) = right hand
(scs^2x)(sec^2x) = (sec^2x)(csc^2x)