The simplest way to prove continuity is to note that z is continuous so |z| is and therefore 1 + |z| is and since 1 + |z| > 0 for all z, 1/(1 + |z|) is also continuous so that z/(1 + |z|) is continuous for all z.
But if e-d you must, then..
In order to prove continuity at z0 in C, choose d = e/(1 + 2|z0|))
If |z - z0| < d, we have
|z/(1 + |z|) - z0/(1 + |z0|)| = | z(1 + |z0|) - z0(1 + |z|) |/ |(1 + |z|)(1 + |z0|)|
<= |z + z|z0| - z0 - z0|z| |
<= |z - z0 + z|z0| - z0|z| |
<= |z - z0| + |z|z0| - z0|z| |
= |z - z0| + | (z - z0)|z0| + z0|z0| - z0|z| |
= |z - z0| + | (z - z0)|z0| + z0(|z0| - |z|) |
<= |z - z0| + |z - z0||z0| + |z0|||z0| - |z||
= |z - z0| + |z - z0||z0| + |z0|||z| - |z0||
= |z - z0| + |z0|( |z - z0| + ||z| - |z0|| )
<= |z - z0| + |z0|( |z - z0| + |z - z0| )
= |z - z0| + 2|z0|(|z - z0|)
= |z - z0|(1 + 2|z0|)
< d(1 + 2|z0|)
= [ e/(1 + 2|z0|)) ] (1 + 2|z0|)
= e
Note: I made use of the following incarnations of the Triangle Inequality in the above proof:
|z + w| <= |z| + |w|
|z - w| <= |z| + |w|
||z| - |w|| <= |z - w|
But if e-d you must, then..
In order to prove continuity at z0 in C, choose d = e/(1 + 2|z0|))
If |z - z0| < d, we have
|z/(1 + |z|) - z0/(1 + |z0|)| = | z(1 + |z0|) - z0(1 + |z|) |/ |(1 + |z|)(1 + |z0|)|
<= |z + z|z0| - z0 - z0|z| |
<= |z - z0 + z|z0| - z0|z| |
<= |z - z0| + |z|z0| - z0|z| |
= |z - z0| + | (z - z0)|z0| + z0|z0| - z0|z| |
= |z - z0| + | (z - z0)|z0| + z0(|z0| - |z|) |
<= |z - z0| + |z - z0||z0| + |z0|||z0| - |z||
= |z - z0| + |z - z0||z0| + |z0|||z| - |z0||
= |z - z0| + |z0|( |z - z0| + ||z| - |z0|| )
<= |z - z0| + |z0|( |z - z0| + |z - z0| )
= |z - z0| + 2|z0|(|z - z0|)
= |z - z0|(1 + 2|z0|)
< d(1 + 2|z0|)
= [ e/(1 + 2|z0|)) ] (1 + 2|z0|)
= e
Note: I made use of the following incarnations of the Triangle Inequality in the above proof:
|z + w| <= |z| + |w|
|z - w| <= |z| + |w|
||z| - |w|| <= |z - w|
-
Sure, why not?
How is the continuity of z / (1 + |z|) any different than the continuity of z itself? If you think it is discontinuous, let us know why and we can discuss it.
How is the continuity of z / (1 + |z|) any different than the continuity of z itself? If you think it is discontinuous, let us know why and we can discuss it.