solve for x
1= (1/(x^2+2x) + (x-1)/x)
1= (1/(x^2+2x) + (x-1)/x)
-
The right-hand side:
1 / (x² + 2x) + (x - 1) / x = 1/[x(x + 2)] + (x - 1) / x
= [1 + (x + 2).( x - 1)] / [x(x + 2)],
and that equals 1, on the LHS.
So, 1 + (x + 2).( x - 1) = x(x + 2),
i.e.: 1 + (x² + x - 2) = x² + 2x,
i.e.: x² + x - 1 = x² + 2x,
i.e.: x - 1 = 2x,
so: x = - 1
■
1 / (x² + 2x) + (x - 1) / x = 1/[x(x + 2)] + (x - 1) / x
= [1 + (x + 2).( x - 1)] / [x(x + 2)],
and that equals 1, on the LHS.
So, 1 + (x + 2).( x - 1) = x(x + 2),
i.e.: 1 + (x² + x - 2) = x² + 2x,
i.e.: x² + x - 1 = x² + 2x,
i.e.: x - 1 = 2x,
so: x = - 1
■
-
1 = (1/(x^2+2x) + (x-1)/x)
1 = (1/(x^2+2x) + (x-1)(x+2)/((x+2)x))
1 = (1/(x^2+2x) + (x^2+x-2)/(x^2+2x))
1 = (x^2+x-1)/(x^2+2x)
x^2 + 2x = x^2 + x - 1
2x = x - 1
x = -1
1 = (1/(x^2+2x) + (x-1)(x+2)/((x+2)x))
1 = (1/(x^2+2x) + (x^2+x-2)/(x^2+2x))
1 = (x^2+x-1)/(x^2+2x)
x^2 + 2x = x^2 + x - 1
2x = x - 1
x = -1