Simplify, leaving as little as possible inside absolute value signs:
I 9x I
I 2x^2 I
I -2x^2 I
I -6y I
I x^2 over -y I
fraction^
Solve:
I q I = 0
I x I = 3
10 - I 2x - 1 I = 4
I 3x + 4 = I x - 7 I
If anyone could show me how to do these examples so I can do the real work I'd be appreciative!
the more detail the better ^^
I 9x I
I 2x^2 I
I -2x^2 I
I -6y I
I x^2 over -y I
fraction^
Solve:
I q I = 0
I x I = 3
10 - I 2x - 1 I = 4
I 3x + 4 = I x - 7 I
If anyone could show me how to do these examples so I can do the real work I'd be appreciative!
the more detail the better ^^
-
|9x| = |9|.|x| = 9x ... (recall that |xy| = |x|.|y|)
|2x^2| = |2.x.x| = |2|.|x|.|x| = 2|x|^2
|-2x^2| = |-2.x.x| = |-2|.|x|.|x| = 2|x|^2
|-6y| = |-6|.|y| = 6|y|
|x^2 / y| = |x.x / y| = |x|.|x| / |y| = |x|^2 / |y| ... (recall that |x/y| = |x|/|y|)
==================
To solve |x| = a for x, there are a couple of cases. If a is negative, then there is no solution, since |x| is always positive. Otherwise, x = a or -a. For example |x| = 3 means that x = 3 or -3.
|q| = 0
q = 0 or -0
q = 0
10 - |2x - 1| = 4
|2x - 1| = 6
2x - 1 = 6 or -6
2x = 7 or -5
x = 7/2 or -5/2
To do the last one, remember that |x| = |y| means that either x = y or x = -y. In this case:
3x + 4 = x - 7, OR 3x + 4 = -(x - 7)
2x = -11 OR 4x = 3
x = -11/2 OR 4/3
|2x^2| = |2.x.x| = |2|.|x|.|x| = 2|x|^2
|-2x^2| = |-2.x.x| = |-2|.|x|.|x| = 2|x|^2
|-6y| = |-6|.|y| = 6|y|
|x^2 / y| = |x.x / y| = |x|.|x| / |y| = |x|^2 / |y| ... (recall that |x/y| = |x|/|y|)
==================
To solve |x| = a for x, there are a couple of cases. If a is negative, then there is no solution, since |x| is always positive. Otherwise, x = a or -a. For example |x| = 3 means that x = 3 or -3.
|q| = 0
q = 0 or -0
q = 0
10 - |2x - 1| = 4
|2x - 1| = 6
2x - 1 = 6 or -6
2x = 7 or -5
x = 7/2 or -5/2
To do the last one, remember that |x| = |y| means that either x = y or x = -y. In this case:
3x + 4 = x - 7, OR 3x + 4 = -(x - 7)
2x = -11 OR 4x = 3
x = -11/2 OR 4/3