Derivative of ln x / e^x
-
y = ln x/e^x
y = ln x * e^-x
dy/dx = -ln x * e^ -x + (e^-x)/x
dy/dx = e^ -x [-ln x + 1/x]
y = ln x * e^-x
dy/dx = -ln x * e^ -x + (e^-x)/x
dy/dx = e^ -x [-ln x + 1/x]
-
f ` (x) is given by Quotient Rule :-
(e^x) (1/x) - (ln x) (e^x)
--------------------------------------…
e^(2x)
e^x - x (lnx)(e^x)
------------------------
x e^(2x)
e^x ( 1 - x ln x )
--------------------------
xe^(2x)
1 - x ln x
------------
x e^x
(e^x) (1/x) - (ln x) (e^x)
--------------------------------------…
e^(2x)
e^x - x (lnx)(e^x)
------------------------
x e^(2x)
e^x ( 1 - x ln x )
--------------------------
xe^(2x)
1 - x ln x
------------
x e^x
-
d/dx [lnx / e^x] = 1/x * e^-x + - e^-x * ln(x)
= [e^-x]/x - [e^-x *ln(x)]
= [e^-x]/x - [e^-x *ln(x)]