Given that the volume of the solid is 12cm^3, find the radius of the cylinder that produces the minimum surface area for the solid.
-
Note that the radius of the cylinder and the radius of the hemispheres will be the same. The surface area of the solid:
SA = 2πrh + 2πr^2 + 2πr^2
SA = 2πrh + 4πr^2
The volume of the solid:
V = πr^2h + (2/3)πr^3 + (2/3)πr^3
V = πr^2h + (4/3)πr^3
12 = πr^2h + (4/3)πr^3
h = [12 - (4/3)πr^3] / [πr^2]
Sub that into the surface area formula:
SA = 2πr[12 - (4/3)πr^3] / [πr^2] + 4πr^2
SA = [24 - (8/3)πr^3] / [r] + 4πr^2
Take the derivative; set it equal to zero:
SA = [-8πr^3 - 24 + (8/3)πr^3] / [r^2] + 8πr
0 = [-8πr^3 - 24 + (8/3)πr^3] / [r^2] + 8πr
0 = -8πr^3 - 24 + (8/3)πr^3 + 8πr^3
0 = (8/3)πr^3 - 24
9 / π = r^3
r = [9 / π]^(1/3)
Verify that this is a minimum with the second derivative, or just take my word for it.
Done!
SA = 2πrh + 2πr^2 + 2πr^2
SA = 2πrh + 4πr^2
The volume of the solid:
V = πr^2h + (2/3)πr^3 + (2/3)πr^3
V = πr^2h + (4/3)πr^3
12 = πr^2h + (4/3)πr^3
h = [12 - (4/3)πr^3] / [πr^2]
Sub that into the surface area formula:
SA = 2πr[12 - (4/3)πr^3] / [πr^2] + 4πr^2
SA = [24 - (8/3)πr^3] / [r] + 4πr^2
Take the derivative; set it equal to zero:
SA = [-8πr^3 - 24 + (8/3)πr^3] / [r^2] + 8πr
0 = [-8πr^3 - 24 + (8/3)πr^3] / [r^2] + 8πr
0 = -8πr^3 - 24 + (8/3)πr^3 + 8πr^3
0 = (8/3)πr^3 - 24
9 / π = r^3
r = [9 / π]^(1/3)
Verify that this is a minimum with the second derivative, or just take my word for it.
Done!