If sin alpha+sin beta=a and cos alpha+cos beta =b , show that
1. sin(alpha+beta)=2ab/a^2+b^2
a^2 means 'a square'
1. sin(alpha+beta)=2ab/a^2+b^2
a^2 means 'a square'
-
sin α + sin ß = a (i)
cos α + cos ß = b (ii)
(i) 2sin (α+ß)/2 cos (α-ß)/2 = a
(ii) 2cos (α+ß)/2 cos (α-ß)/2 = b → cos (α-ß)/2 = b / 2cos (α+ß)/2
Substitute in (i) :
2b sin (α+ß)/2 / 2cos (α+ß)/2 = a → b tan (α+ß)/2 = a →
tan (α+ß)/2 = a/b
Now use the formula sin 2t = 2tan t / ( 1 + tan²t ) , with t = (α+ß)/2 :
sin (α+ß) = (2a/b) / ( 1 + a²/b² ) = 2ab² / b ( b² + a² ) = 2ab / ( a² + b² )
cos α + cos ß = b (ii)
(i) 2sin (α+ß)/2 cos (α-ß)/2 = a
(ii) 2cos (α+ß)/2 cos (α-ß)/2 = b → cos (α-ß)/2 = b / 2cos (α+ß)/2
Substitute in (i) :
2b sin (α+ß)/2 / 2cos (α+ß)/2 = a → b tan (α+ß)/2 = a →
tan (α+ß)/2 = a/b
Now use the formula sin 2t = 2tan t / ( 1 + tan²t ) , with t = (α+ß)/2 :
sin (α+ß) = (2a/b) / ( 1 + a²/b² ) = 2ab² / b ( b² + a² ) = 2ab / ( a² + b² )