Prove That !! cos^-1x = 2sin^-1 root of(1-x/2)
Favorites|Homepage
Subscriptions | sitemap
HOME > Mathematics > Prove That !! cos^-1x = 2sin^-1 root of(1-x/2)

Prove That !! cos^-1x = 2sin^-1 root of(1-x/2)

[From: ] [author: ] [Date: 11-05-31] [Hit: ]
............
Please help me with this problem.. i couldnt even get anything nearer to it.

-
To Prove : cosֿ¹ x = 2 · sinֿ¹ √[ ( 1 - x ) / 2 ].
________________________________

On the RHS,

let : x = cos 2Φ.

∴ 2Φ = cosֿ¹ x ........................................… (1)

∴√[ (1-x) / 2] = √[ ( 1 - cos 2Φ ) / 2 ]

. . . . . . . . . . . = √[ ( 2 sin² Φ ) / 2 ]

. . . . . . . . . . . = sin Φ.
_____________________________

∴ RHS

= 2 · sinֿ¹ √[ (1-x) / 2 ]

= 2 · sinֿ¹ ( sin Φ )

= 2 · Φ

= ( 2Φ )

= cosֿ¹ x ............... from (1)

= LHS ........................................… Q.E.D.
________________________

Happy To Help !
________________________
1
keywords: That,root,sin,Prove,cos,of,Prove That !! cos^-1x = 2sin^-1 root of(1-x/2)
New
Hot
© 2008-2010 http://www.science-mathematics.com . Program by zplan cms. Theme by wukong .