the question is mutiple choice, but i have to work it out. its says:
Factorising (x+2)^3 - x^3 yields:
a) x(3x^2+6x+4)
b) 2x(3x^2+6x+4)
c) 2(3x^2+6x+2)
d) x(3x^2-6x+4)
e) 2(3x^2+6x+4)
I know, your probs thinkin "cubic functions! yeah **** that!" but seriously, im stuck on how to work it out. i've gone through just about all my notes :( please can you help.
Factorising (x+2)^3 - x^3 yields:
a) x(3x^2+6x+4)
b) 2x(3x^2+6x+4)
c) 2(3x^2+6x+2)
d) x(3x^2-6x+4)
e) 2(3x^2+6x+4)
I know, your probs thinkin "cubic functions! yeah **** that!" but seriously, im stuck on how to work it out. i've gone through just about all my notes :( please can you help.
-
(x+2)³ - x³ is the difference of cubes.
Formulas for sum/difference of cubes:
A³ + B³ = (A + B) (A² − AB + B²)
A³ − B³ = (A − B) (A² + AB + B²)
(x+2)³ - x³ = ((x+2) - x) ((x+2)² + (x+2)x + x²)
. . . . . . . . = 2 (x² + 4x + 4 + x² + 2x + x²)
. . . . . . . . = 2 (3x² + 6x + 4)
====================
Alternate method: expand original function, then factor:
(x+2)³ - x³ = (x+2)(x+2)² - x³
. . . . . . . . = (x+2)(x²+4x+4) - x³
. . . . . . . . = (x³ + 4x² + 4x + 2x² + 8x + 8) - x³
. . . . . . . . = 6x² + 12x + 8
. . . . . . . . = 2 (3x² + 6x + 4)
Formulas for sum/difference of cubes:
A³ + B³ = (A + B) (A² − AB + B²)
A³ − B³ = (A − B) (A² + AB + B²)
(x+2)³ - x³ = ((x+2) - x) ((x+2)² + (x+2)x + x²)
. . . . . . . . = 2 (x² + 4x + 4 + x² + 2x + x²)
. . . . . . . . = 2 (3x² + 6x + 4)
====================
Alternate method: expand original function, then factor:
(x+2)³ - x³ = (x+2)(x+2)² - x³
. . . . . . . . = (x+2)(x²+4x+4) - x³
. . . . . . . . = (x³ + 4x² + 4x + 2x² + 8x + 8) - x³
. . . . . . . . = 6x² + 12x + 8
. . . . . . . . = 2 (3x² + 6x + 4)