Solve
A.) X= -8a
B.) X=-4a
C.) X=4a
D.) X=8a
A.) X= -8a
B.) X=-4a
C.) X=4a
D.) X=8a
-
(2x-a)/(x+a) -(x+3a)/(a-x)=a²/(a²-x²) +3
[(2x-a)(a-x)-(x-3a)(x+a)]/(a²-x²)=a²/(… +3
[-2x²+3ax-a²-(x²-2ax-3a²)]=a²+3(a²-x²)
-3x²+2a²+5ax=a²+3a²-3x²
5ax=2a²
x=2/5 a
[(2x-a)(a-x)-(x-3a)(x+a)]/(a²-x²)=a²/(… +3
[-2x²+3ax-a²-(x²-2ax-3a²)]=a²+3(a²-x²)
-3x²+2a²+5ax=a²+3a²-3x²
5ax=2a²
x=2/5 a
-
fully factor everything.
assuming expression is
(2x-a) / (x+a) - (x+3a)/(a-x) = a^2/(a^2-x^2) + 3
(2x-a) / (a+x) - (x+3a)/(a-x) = a^2/(a-x)(a+x) + 3
lowest comon denominator: (x-a)(x+a):
(2x-a)(a-x) / (a-x)(a+x) - (x+3a)(a+x)/(a-x)(a+x) = a^2/(a-x)(a+x) + 3(a-x)(a+x)/(a-x)(a+x)
SINCE denominators are equal to each other, solve using numerators.
(2x-a)(a-x) - (3a+x)(a+x) = a^2 +3(a-x)(a+x)
2x^2 +2ax -ax -a^2 - (3a^2 +3ax +ax +x^2) = a^2 + 3(a^2 +ax -ax -x^2)
2x^2 +ax -a^2 -(3a^2 +4ax +x^2) = a^2 +3(a^2 -x^2)
2x^2 +ax - a^2 -3a^2 -4ax -x^2 = a^2 +3a^2 -3x^2
x^2 -4a^2 -3ax = 4a^2 -3x^2
0 = 4a^2 +4a^2 -3x^2 -x^2 +3ax
0 = 8a^2 +3ax - 4x^2
use quadratic formula.
assuming expression is
(2x-a) / (x+a) - (x+3a)/(a-x) = a^2/(a^2-x^2) + 3
(2x-a) / (a+x) - (x+3a)/(a-x) = a^2/(a-x)(a+x) + 3
lowest comon denominator: (x-a)(x+a):
(2x-a)(a-x) / (a-x)(a+x) - (x+3a)(a+x)/(a-x)(a+x) = a^2/(a-x)(a+x) + 3(a-x)(a+x)/(a-x)(a+x)
SINCE denominators are equal to each other, solve using numerators.
(2x-a)(a-x) - (3a+x)(a+x) = a^2 +3(a-x)(a+x)
2x^2 +2ax -ax -a^2 - (3a^2 +3ax +ax +x^2) = a^2 + 3(a^2 +ax -ax -x^2)
2x^2 +ax -a^2 -(3a^2 +4ax +x^2) = a^2 +3(a^2 -x^2)
2x^2 +ax - a^2 -3a^2 -4ax -x^2 = a^2 +3a^2 -3x^2
x^2 -4a^2 -3ax = 4a^2 -3x^2
0 = 4a^2 +4a^2 -3x^2 -x^2 +3ax
0 = 8a^2 +3ax - 4x^2
use quadratic formula.