Determine the slope of the tangent line to the graph of
f(x) = 12x * arctan (e ^ (2x)) at ( 1\4 ln (3 , pi ln (3) )
without using a calculator I get
f'(1/4 ln3) = 12arctan ( e^ (ln3 / 2)) + (12ln3e^(ln3/2))/(2+2e(ln3))
is that correct?
f(x) = 12x * arctan (e ^ (2x)) at ( 1\4 ln (3 , pi ln (3) )
without using a calculator I get
f'(1/4 ln3) = 12arctan ( e^ (ln3 / 2)) + (12ln3e^(ln3/2))/(2+2e(ln3))
is that correct?
-
let y = 12x * arctan (e ^ (2x))
y ' = [12x /(1 + e^(4x)]*2e^(2x)) + 12 arctan(e^(2x)
=6x e^(-2x) /( 1 + e^(4x) + 12 arctan(e^(2x)
plug in x = (1/4) ln(3)
y ' = 6(1/4)ln 3/√3(1 + 3) + 12 (Π/3)
slope = (√3/8)ln(3) + 4Π
y ' = [12x /(1 + e^(4x)]*2e^(2x)) + 12 arctan(e^(2x)
=6x e^(-2x) /( 1 + e^(4x) + 12 arctan(e^(2x)
plug in x = (1/4) ln(3)
y ' = 6(1/4)ln 3/√3(1 + 3) + 12 (Π/3)
slope = (√3/8)ln(3) + 4Π