1. e^(4x+1)=p
2. log5(nx)=b
that is log base 5
solve each equation for x
2. log5(nx)=b
that is log base 5
solve each equation for x
-
1. e^(4x+1)=p
4x+1 =ln p
4x =[ln p] -1 =ln p -ln e =ln (p/e)
x =ln (p/e) / 4
2. log5(nx)=b
nx =5^b
x =5^b / n
4x+1 =ln p
4x =[ln p] -1 =ln p -ln e =ln (p/e)
x =ln (p/e) / 4
2. log5(nx)=b
nx =5^b
x =5^b / n
-
1.
e^(4x+1)=p
Putting ln to both sides:
ln(e^(4x+1))=ln(p)
As ln(e^(4x+1))=4x+1
4x+1=ln(p)
x=(ln(p)-1)/4
2.
log5(nx)=b
By definition:
5^b=nx
x=5^b/n
e^(4x+1)=p
Putting ln to both sides:
ln(e^(4x+1))=ln(p)
As ln(e^(4x+1))=4x+1
4x+1=ln(p)
x=(ln(p)-1)/4
2.
log5(nx)=b
By definition:
5^b=nx
x=5^b/n
-
...e^(4x+1)=p
lne^(4x+1)=lnp
.......4x+1=lnp
............-1..-1
............4x=lnp-1
...........-----.--------
.............4.....4
x=(lnp-1)/4
log5(nx)=b
5^b=nx
-----.-----
..n....n
(5^b)/n=x
lne^(4x+1)=lnp
.......4x+1=lnp
............-1..-1
............4x=lnp-1
...........-----.--------
.............4.....4
x=(lnp-1)/4
log5(nx)=b
5^b=nx
-----.-----
..n....n
(5^b)/n=x