I dont know what to do!! Please help.
Solve triangle ABC assuming the given measures. (notation is standard that means a,b and c denote the sides opposite angles A,B and C, respectively)
Exercise
a=20; b=40; A=30º
Anything at all will help. Thankss!
Solve triangle ABC assuming the given measures. (notation is standard that means a,b and c denote the sides opposite angles A,B and C, respectively)
Exercise
a=20; b=40; A=30º
Anything at all will help. Thankss!
-
use the sine law
a/sinA=b/sinB=c/sinC
20/sin(30)=40/sin(B)
sin(B)=1
B=90
so 90+30=120
180-120=60
A=30
B=90
C=60
edit:just realised you need the length of sides
so use the sine law again for c
a/sinA=c/sinC
20/sin(30)=c/sin(60)
c=8.66
or sqrt(75)
a/sinA=b/sinB=c/sinC
20/sin(30)=40/sin(B)
sin(B)=1
B=90
so 90+30=120
180-120=60
A=30
B=90
C=60
edit:just realised you need the length of sides
so use the sine law again for c
a/sinA=c/sinC
20/sin(30)=c/sin(60)
c=8.66
or sqrt(75)
-
a/sinA = b/sinB
so 20/sin30 = 40/sinB
this becomes arcsin (40sin30/20)=B
so B = 90º
so C = 60º
so c = sqrt(20^2+40^2) = 20(sqrt5)
so area = 0.5*20*40 = 800
so 20/sin30 = 40/sinB
this becomes arcsin (40sin30/20)=B
so B = 90º
so C = 60º
so c = sqrt(20^2+40^2) = 20(sqrt5)
so area = 0.5*20*40 = 800
-
Law of Sines : a / sin A = b / sin B = c / sin C
Law of Cosines :
a² = b² + c² − 2bc cos A
b² = a² + c² − 2ac cos B
c² = a² + b² − 2ab cos C
sin30 = 0.5.
do substitutions repeatedly, to get other sides and angles.
Law of Cosines :
a² = b² + c² − 2bc cos A
b² = a² + c² − 2ac cos B
c² = a² + b² − 2ab cos C
sin30 = 0.5.
do substitutions repeatedly, to get other sides and angles.
-
is the triangle is right-angled triangle?