Determine if Σ lnx/√x dx converges or diverges
Favorites|Homepage
Subscriptions | sitemap
HOME > Mathematics > Determine if Σ lnx/√x dx converges or diverges

Determine if Σ lnx/√x dx converges or diverges

[From: ] [author: ] [Date: 11-05-03] [Hit: ]
we evaluate ∫(1 to ∞) ln x dx/x^(1/2).u = ln x,dv = dx/x,So,= ∞.Hence,......
->Show the series satisfies the hypothesis of the integral test.
->Use the Integral Test to determine if the series converges or diverges.

-
Assuming that x ≥ 1, the integrand is nonnegative (and continuous) for all x ≥ 1.

Now, we evaluate ∫(1 to ∞) ln x dx/x^(1/2).

Using integration by parts with
u = ln x, dv = x^(-1/2) dx
dv = dx/x, v = 2x^(1/2)

So, we get
2x^(1/2) ln x {for x = 1 to ∞} - ∫(1 to ∞) 2 dx/x^(1/2)
= [2x^(1/2) ln x - 4x^(1/2)] {for x = 1 to ∞}
= (2 ln x - 4) * x^(1/2) {for x = 1 to ∞}
= ∞.

Hence, the integral is divergent.

I hope this helps!
1
keywords: Sigma,converges,or,lnx,dx,radic,Determine,if,diverges,Determine if Σ lnx/√x dx converges or diverges
New
Hot
© 2008-2010 http://www.science-mathematics.com . Program by zplan cms. Theme by wukong .