Tan(3x)=tanx(3-tan^2x)/1-3tan^2x
Favorites|Homepage
Subscriptions | sitemap
HOME > Mathematics > Tan(3x)=tanx(3-tan^2x)/1-3tan^2x

Tan(3x)=tanx(3-tan^2x)/1-3tan^2x

[From: ] [author: ] [Date: 11-04-28] [Hit: ]
......
can you please help me prove this

-
tan(3x)

= tan(x + 2x)

= [ tan x + tan(2x) ] / [ 1 - tan(x) tan(2x)]

= [ tan x + { 2 tan x / (1 - tan^2(x) } ] /[ 1 - tan x { 2 tan x / (1 - tan^2(x) ]

= [tan x (1 - tan^2(x)) + 2tan x ] / [1 - tan^2(x) - 2tan^2(x) ]

= [ 3tan x - tan^3(x) ] / [1 - 3tan^2(x) ]

= tan x [ 3 - tan^2(x) ]/ [1 - 3tan^2(x) ]

-
= tan(x + 2x)

= [ tan x + tan(2x) ] / [ 1 - tan(x) tan(2x)]

= [ tan x + { 2 tan x / (1 - tan^2(x) } ] /[ 1 - tan x { 2 tan x / (1 - tan^2(x) ]

= [tan x (1 - tan^2(x)) + 2tan x ] / [1 - tan^2(x) - 2tan^2(x) ]

= [ 3tan x - tan^3(x) ] / [1 - 3tan^2(x) ]

= tan x [ 3 - tan^2(x) ]/ [1 - 3tan^2(x) ]
1
keywords: tan,Tan,tanx,Tan(3x)=tanx(3-tan^2x)/1-3tan^2x
New
Hot
© 2008-2010 http://www.science-mathematics.com . Program by zplan cms. Theme by wukong .