1.) P (1.2,4.5), B (5.3,1.9)
2.) A (-5.9,7.2) P (-1.05,5.85)
THANKSSSS ! <3
2.) A (-5.9,7.2) P (-1.05,5.85)
THANKSSSS ! <3
-
The midpoint of a segment can be found by taking the average of all the coordinates in the line segment. Being linear, however, you can simply take the average coordinates of the endpoints, meaning:
(Xa+Xb)/2=Xp
(Ya+Yb)/2=Yp
1) P(1.2, 4.5), B(5.3, 1.9), A(?, ?)
(Xa+Xb)/2=Xp
(Xa+5.3)/2=1.2
Xa+5.3=2.4
Xa=-2.9
(Ya+Yb)/2=Yp
(Ya+1.9)/2=4.5
Ya+1.9=9.0
Ya=7.1
A(-2.9, 7.1)
2) A(-5.9, 7.2), P(-1.05, 5.85), B(?,?)
(Xa+Xb)/2=Xp
(-5.9+Xb)/2=-1.05
-5.9+Xb=-2.1
Xb=3.8
(Ya+Yb)/2=Yp
(7.2+Yb)/2=5.85
7.2+Yb=11.7
Yb=4.5
B(3.8, 4.5)
Hope this helps.
(Xa+Xb)/2=Xp
(Ya+Yb)/2=Yp
1) P(1.2, 4.5), B(5.3, 1.9), A(?, ?)
(Xa+Xb)/2=Xp
(Xa+5.3)/2=1.2
Xa+5.3=2.4
Xa=-2.9
(Ya+Yb)/2=Yp
(Ya+1.9)/2=4.5
Ya+1.9=9.0
Ya=7.1
A(-2.9, 7.1)
2) A(-5.9, 7.2), P(-1.05, 5.85), B(?,?)
(Xa+Xb)/2=Xp
(-5.9+Xb)/2=-1.05
-5.9+Xb=-2.1
Xb=3.8
(Ya+Yb)/2=Yp
(7.2+Yb)/2=5.85
7.2+Yb=11.7
Yb=4.5
B(3.8, 4.5)
Hope this helps.