Please dumb it down because i am so lost >< please and thank you :)
-
A gene is a segment of DNA that codes for a polypeptide or a functional RNA. Many times the word "gene" is used interchangeably with the term "protein-coding gene", but a gene does not need to code for a protein (polypeptide).
There are two main steps in making a protein from DNA: transcription and translation.
Transcription.
During the process of transcription, an enzyme called RNA polymerase binds to DNA at a gene's promoter, then begins unwinding the DNA and making a complementary strand of RNA from the exposed DNA template. Depending on the gene being transcribed, the result can be a molecule of mRNA (messenger RNA), tRNA (transfer RNA), or rRNA (ribosomal RNA). Each type of RNA performs a specific function later in translation.
rRNA
Ribosomal RNA (rRNA) along with ribosomal proteins make up ribosomes, the "workbenches" on which polypeptides (proteins) are synthesized. It turns out that it is actually rRNA, and not a protein, in the large subunit of the ribosome that performs the peptidyl transferase function of linking amino acids together via peptide bonds. In eukaryotes, the genes coding for rRNAs are located in the nucleolus of the nucleus. A ribosome has 3 binding sites: an A (aminoacyl) site, a P (peptidyl) site, and an E (exit) site.
mRNA
The message carrying the information needed to make a particular polypeptide exists in the mRNA molecule. It binds with a ribosome and the ribosome starts reading it one codon - 3 consecutive mRNA bases - at a time. Each of the possible 64 codons codes for a particular amino acid, or for a release factor (in which case it is a STOP codon). So the order of bases in the mRNA specifies the order in which amino acids are linked together to form a polypeptide.
tRNA
A tRNA molecule has 2 main sites. At one end it has an amino-acid attachment site and on the opposite end it has a 3-base anticodon. An enzyme recognizes the type of tRNA and attaches the appropriate amino acid to it, at which point the tRNA is said to be charged. Charged tRNA molecules "bump into" the empty ribosome A site, but only if there is a complementary match between the mRNA codon associated with that site and the anticodon on the tRNA does the charged tRNA dock.
There are two main steps in making a protein from DNA: transcription and translation.
Transcription.
During the process of transcription, an enzyme called RNA polymerase binds to DNA at a gene's promoter, then begins unwinding the DNA and making a complementary strand of RNA from the exposed DNA template. Depending on the gene being transcribed, the result can be a molecule of mRNA (messenger RNA), tRNA (transfer RNA), or rRNA (ribosomal RNA). Each type of RNA performs a specific function later in translation.
rRNA
Ribosomal RNA (rRNA) along with ribosomal proteins make up ribosomes, the "workbenches" on which polypeptides (proteins) are synthesized. It turns out that it is actually rRNA, and not a protein, in the large subunit of the ribosome that performs the peptidyl transferase function of linking amino acids together via peptide bonds. In eukaryotes, the genes coding for rRNAs are located in the nucleolus of the nucleus. A ribosome has 3 binding sites: an A (aminoacyl) site, a P (peptidyl) site, and an E (exit) site.
mRNA
The message carrying the information needed to make a particular polypeptide exists in the mRNA molecule. It binds with a ribosome and the ribosome starts reading it one codon - 3 consecutive mRNA bases - at a time. Each of the possible 64 codons codes for a particular amino acid, or for a release factor (in which case it is a STOP codon). So the order of bases in the mRNA specifies the order in which amino acids are linked together to form a polypeptide.
tRNA
A tRNA molecule has 2 main sites. At one end it has an amino-acid attachment site and on the opposite end it has a 3-base anticodon. An enzyme recognizes the type of tRNA and attaches the appropriate amino acid to it, at which point the tRNA is said to be charged. Charged tRNA molecules "bump into" the empty ribosome A site, but only if there is a complementary match between the mRNA codon associated with that site and the anticodon on the tRNA does the charged tRNA dock.
12
keywords: from,DNA,How,formed,are,proteins,How are proteins formed from DNA