Given that (8x^2-20x+12)/(x(x-2)^2) can be expressed in the form A/x + B/(x-2) + C/(x-2)^2, determine the constants A, B, and C.
-
(8x^2-20x+12)/(x(x-2)^2)
= [A(x-2)^2 + Bx(x-2) + Cx] / (x(x-2)^2)
=[Ax^2-4Ax+4A+Bx^2-2Bx+Cx] / (x(x-2)^2)
compare (8x^2-20x+12) and (Ax^2-4Ax+4A+Bx^2-2Bx+Cx)
A+B = 8
-4A-2B+C = -20
4A = 12
A = 3
B = 5
C = 2
= [A(x-2)^2 + Bx(x-2) + Cx] / (x(x-2)^2)
=[Ax^2-4Ax+4A+Bx^2-2Bx+Cx] / (x(x-2)^2)
compare (8x^2-20x+12) and (Ax^2-4Ax+4A+Bx^2-2Bx+Cx)
A+B = 8
-4A-2B+C = -20
4A = 12
A = 3
B = 5
C = 2