What is ((2sqrt(1-x^2))/sqrt2)^2?
-
Exponents distribute over multiplication and division.
so this will become:
(2)^2 (√(1-x^2))^2 / (√2)^2
= 4 (1-x^2) / 2
= 2(1-x^2)
= 2-2x^2
Or you can factor it all out:
2(1-x^2) <--- (1-x^2) is a difference of squares...
2(1-x)(1+x)
so this will become:
(2)^2 (√(1-x^2))^2 / (√2)^2
= 4 (1-x^2) / 2
= 2(1-x^2)
= 2-2x^2
Or you can factor it all out:
2(1-x^2) <--- (1-x^2) is a difference of squares...
2(1-x)(1+x)
-
...2√(1 - x^2)
[-------------------]^2
......√(2)
....4√(1 - x^2)^2
=-------------------------
.......√(4)
.....4(1 - x^2)
=--------------------
.........2
=2(1 - x^2)
=- 2(x^2 - 1)
= - 2(x + 1)(x - 1) answer//
[-------------------]^2
......√(2)
....4√(1 - x^2)^2
=-------------------------
.......√(4)
.....4(1 - x^2)
=--------------------
.........2
=2(1 - x^2)
=- 2(x^2 - 1)
= - 2(x + 1)(x - 1) answer//
-
[(2sqrt(1-x^2)) / sqrt2]^2 = [(sqrt(2)*sqrt(1-x^2)]^2 = 2(1-x^2) >========< ANSWER
-
2(1-x)(1+x)
-
(2√(1−x²)/√2)²
= 2² √(1−x²)² / √2²
= 4 (1−x²) / 2
= 2 (1−x²)
= 2 (1−x) (1+x)
= 2² √(1−x²)² / √2²
= 4 (1−x²) / 2
= 2 (1−x²)
= 2 (1−x) (1+x)