I'm having trouble here, how do you do this and what is the answer? (explain the steps, i've got a test i'm preparing for in a few days)
(sin^2x)(cot^2x) = ?
cosx(1+tan^2x) = ?
cosx / 1 - sinx - cosx / 1 + sinx = ?
(sin^2x)(cot^2x) = ?
cosx(1+tan^2x) = ?
cosx / 1 - sinx - cosx / 1 + sinx = ?
-
1.)
(sin^2x)(cot^2x) = (sin^2x) (cos^2x/sin^2x) = cos^2x
2.)
cosx(1+tan^2x) = cosx( sec^2x) = cosx (1/cos^2x) = 1/cosx = secx
3.)
cosx / (1 - sinx) - cosx / (1 + sinx) = ...
(1+sinx)cosx / (1 - sinx)(1+sinx) - (1-sinx)cosx / (1 + sinx)(1-sinx)
{ we are getting a common deminator }
cosx(1+sinx)/(1-sin^2x) - (1-sinx)cosx/(1-sin^2x) =
[cosx(1+sinx) - cosx(1-sinx)] / (1-sin^2x)=
[cosx(1+sinx) - cosx(1-sinx)] / cos^2x=
[(1+sinx)-(1-sinx) ]/cosx =
2sinx/cosx =
2 tanx
(sin^2x)(cot^2x) = (sin^2x) (cos^2x/sin^2x) = cos^2x
2.)
cosx(1+tan^2x) = cosx( sec^2x) = cosx (1/cos^2x) = 1/cosx = secx
3.)
cosx / (1 - sinx) - cosx / (1 + sinx) = ...
(1+sinx)cosx / (1 - sinx)(1+sinx) - (1-sinx)cosx / (1 + sinx)(1-sinx)
{ we are getting a common deminator }
cosx(1+sinx)/(1-sin^2x) - (1-sinx)cosx/(1-sin^2x) =
[cosx(1+sinx) - cosx(1-sinx)] / (1-sin^2x)=
[cosx(1+sinx) - cosx(1-sinx)] / cos^2x=
[(1+sinx)-(1-sinx) ]/cosx =
2sinx/cosx =
2 tanx
-
Rules
tan = sin/cos
cot = cos/sin
sin^2 + cos^2 = 1
tan = sin/cos
cot = cos/sin
sin^2 + cos^2 = 1
-
Bchbhx