Number theory. If a|n and b|n with gcd(a,b) = 1. Prove that ab | n
Favorites|Homepage
Subscriptions | sitemap
HOME > > Number theory. If a|n and b|n with gcd(a,b) = 1. Prove that ab | n

Number theory. If a|n and b|n with gcd(a,b) = 1. Prove that ab | n

[From: ] [author: ] [Date: 13-01-21] [Hit: ]
if b|n then b = kn for integer k.therefore ab|n → (jn)(kn)|n → jkn²|n = true.......
a|n ==> n = 0 mod a
b|n ==> n = 0 mod b
n = 0 mod (a*b) since gcd(a,b) = 1
that means ab|n ......proved
+++++++++++=

-
if a|n then a = jn for integer j.
if b|n then b = kn for integer k.

therefore ab|n → (jn)(kn)|n → jkn²|n = true.
1
keywords: and,with,that,1.,gcd,Prove,If,theory,Number,ab,Number theory. If a|n and b|n with gcd(a,b) = 1. Prove that ab | n
New
Hot
© 2008-2010 http://www.science-mathematics.com . Program by zplan cms. Theme by wukong .