sin(A + B) = sinAcosB + cosAsinB
=> sin(x + 60°) = sinxcos60° + cosxsin60°
=> (1/2)sinx + (√3/2)cosx
=> 3cosx = (1/2)sinx + (√3/2)cosx
i.e. 6cosx = sinx + (√3)cosx
so, (6 - √3)cosx = sinx
=> tanx = 6 - √3
=> x = 76.8° + 180n°....for n = 0, 1, 2,...
i.e. x = 76.8° and 256.8° in the range 0° ≤ x ≤ 360°
:)>
=> sin(x + 60°) = sinxcos60° + cosxsin60°
=> (1/2)sinx + (√3/2)cosx
=> 3cosx = (1/2)sinx + (√3/2)cosx
i.e. 6cosx = sinx + (√3)cosx
so, (6 - √3)cosx = sinx
=> tanx = 6 - √3
=> x = 76.8° + 180n°....for n = 0, 1, 2,...
i.e. x = 76.8° and 256.8° in the range 0° ≤ x ≤ 360°
:)>