I got x / [ √(1 + x²) - x√(1 + x²) - 1 ] for the answer.
Is it correct, if not can you show me how to do it step by step?
Is it correct, if not can you show me how to do it step by step?
-
Let,
y = arctan (x - √(1 + x²) ),
SO,
tan y = (x - √(1 + x²) ),
sec^2y*dy/dx = 1 - x / √(1+x^2),
dy/dx = [1/sec^2y]*[√(1+x^2) -x] / √(1+x^2),
dy/dx = [1/(1+tan^2y]*[√(1+x^2) -x] / √(1+x^2),
dy/dx = [√(1+x^2) - x] / √(1+x^2)*[1 + (x-√(1+x^2))^2],
OR,
dy/dx = x / [ √(1 + x²) - x√(1 + x²) - 1 ] >====================< ANSWER
Your Answer is CORRECT .......................
y = arctan (x - √(1 + x²) ),
SO,
tan y = (x - √(1 + x²) ),
sec^2y*dy/dx = 1 - x / √(1+x^2),
dy/dx = [1/sec^2y]*[√(1+x^2) -x] / √(1+x^2),
dy/dx = [1/(1+tan^2y]*[√(1+x^2) -x] / √(1+x^2),
dy/dx = [√(1+x^2) - x] / √(1+x^2)*[1 + (x-√(1+x^2))^2],
OR,
dy/dx = x / [ √(1 + x²) - x√(1 + x²) - 1 ] >====================< ANSWER
Your Answer is CORRECT .......................