I know you are suppose to use u substitution
-
This one is a bit subtle.
Let u = x^2 - 9.
So, x^2 = u + 9 and du = 2x dx.
Hence, ∫ x^5 (x^2 - 9)^(3/2) dx
= ∫ (x^2)^2 (x^2 - 9)^(3/2) * x dx
= ∫ (u + 9)^2 * u^(3/2) * du/2
Expanding, we obtain
(1/2) ∫ (u^2 + 18u + 81) * u^(3/2) du
= (1/2) ∫ (u^(7/2) + 18u^(5/2) + 81u^(3/2)) du
= (1/2) [(2/9) u^(9/2) + 18 * (2/7) u^(7/2) + 81 * (2/5) u^(5/2)] + C
= (1/9) (x^2 - 9)^(9/2) + (18/7) (x^2 - 9)^(7/2) + (81/5) (x^2 - 9)^(5/2) + C.
I hope this helps!
Let u = x^2 - 9.
So, x^2 = u + 9 and du = 2x dx.
Hence, ∫ x^5 (x^2 - 9)^(3/2) dx
= ∫ (x^2)^2 (x^2 - 9)^(3/2) * x dx
= ∫ (u + 9)^2 * u^(3/2) * du/2
Expanding, we obtain
(1/2) ∫ (u^2 + 18u + 81) * u^(3/2) du
= (1/2) ∫ (u^(7/2) + 18u^(5/2) + 81u^(3/2)) du
= (1/2) [(2/9) u^(9/2) + 18 * (2/7) u^(7/2) + 81 * (2/5) u^(5/2)] + C
= (1/9) (x^2 - 9)^(9/2) + (18/7) (x^2 - 9)^(7/2) + (81/5) (x^2 - 9)^(5/2) + C.
I hope this helps!