Solve for x In Terms of the Other
Letters.
3ax^2 - 2ax - 3bx + 2b = 0, where a cannot be zero.
Letters.
3ax^2 - 2ax - 3bx + 2b = 0, where a cannot be zero.
-
... 3ax^2 - 2ax - 3bx + 2b = 0
or 3ax^2 - (2a + 3b)x + 2b = 0
The Quadratic Formula:
x = [ -b ± √ ( (b)² - 4(a)(c) ) ] / 2(a)
x = [ (2a + 3b) ± √ ( (2a + 3b)² - 4(3a)(2b) ) ] / 2(3a)
x = [ (2a + 3b) ± √ ( (2a + 3b)² - 24ab ) ] / (6a)
x = [ (2a + 3b) ± √ ( (4a² +12ab + 9b² - 24ab ) ] / (6a)
x = [ (2a + 3b) ± √ ( (4a² -12ab + 9b²) ] / (6a)
x = [ (2a + 3b) ± √ ( (2a - 3b)² ] / (6a)
x = [ (2a + 3b) ± (2a - 3b) ] / (6a)
x = { [ (2a + 3b) - (2a - 3b) ] / (6a) , (2a + 3b) + (2a - 3b) ] / (6a) }
x = { b/a , 2/3 }
or 3ax^2 - (2a + 3b)x + 2b = 0
The Quadratic Formula:
x = [ -b ± √ ( (b)² - 4(a)(c) ) ] / 2(a)
x = [ (2a + 3b) ± √ ( (2a + 3b)² - 4(3a)(2b) ) ] / 2(3a)
x = [ (2a + 3b) ± √ ( (2a + 3b)² - 24ab ) ] / (6a)
x = [ (2a + 3b) ± √ ( (4a² +12ab + 9b² - 24ab ) ] / (6a)
x = [ (2a + 3b) ± √ ( (4a² -12ab + 9b²) ] / (6a)
x = [ (2a + 3b) ± √ ( (2a - 3b)² ] / (6a)
x = [ (2a + 3b) ± (2a - 3b) ] / (6a)
x = { [ (2a + 3b) - (2a - 3b) ] / (6a) , (2a + 3b) + (2a - 3b) ] / (6a) }
x = { b/a , 2/3 }
-
ax(3x+2) - b(3x+2) = 0
(ax-b)(3x+2) = 0
x = b/a
x=-2/3
(ax-b)(3x+2) = 0
x = b/a
x=-2/3