How is that??
so does (3x)^2 = 9x^2???
so does (3x)^2 = 9x^2???
-
The 3x is inside the parenthesis which means you must raise 3 to the power of 2 (3^2 = 9) and you must raise x to the power of 2 (x^2). Putting this together, you get 9x^2
-
(2x) * (2x) = 2 * 2 * x * x = 4 x^2
(3x)^2 = (3x) * (3x) = 3 * 3 * x * x = 9x^2
You are squaring everything inside the parenthesis. (ab)^2 = (ab)*(ab) = a^2 b^2 for any a and b.
(3x)^2 = (3x) * (3x) = 3 * 3 * x * x = 9x^2
You are squaring everything inside the parenthesis. (ab)^2 = (ab)*(ab) = a^2 b^2 for any a and b.
-
2x^2 - 4x - 4 = 2
2x^2 - 4x - 6 = 0
x^2 - 2x - 3 = 0
(x - 3)(x + 1) = 0
x - 3 = 0
x = 3
or
x + 1 = 0
x = -1
so the two solutions are x = -1, 3.
2x^2 - 4x - 6 = 0
x^2 - 2x - 3 = 0
(x - 3)(x + 1) = 0
x - 3 = 0
x = 3
or
x + 1 = 0
x = -1
so the two solutions are x = -1, 3.
-
(xy)^n=x^n*y^n
=>
(2x)^2=2^2*x^2
(2x)^2=4x^2
Similarly
(3x)^2=9x^2
=>
(2x)^2=2^2*x^2
(2x)^2=4x^2
Similarly
(3x)^2=9x^2
-
(2x)^2 = 4x^2?
(2x)^2 = (2x) * (2x)
= 4x^2
(3x)^2 = (3x)*(3x)
= 9x^2
(2x)^2 = (2x) * (2x)
= 4x^2
(3x)^2 = (3x)*(3x)
= 9x^2