Use the transformation T:9x,y)--> (x+2,y). T stands for the transformation of gliding
T^3:(x,y)--> (___,___)
T^-1:(x,y)--> (___,___)
fill in the blank
T^3:(x,y)--> (___,___)
T^-1:(x,y)--> (___,___)
fill in the blank
-
T:(9x,y)--> (x+2,y).==> T:(x,y) ---> [(x+2)/9],y]
The transform is a map from (x,y) to (x,y)
So y gets transformed to y and 9x to x + 2
T^3(x,y) --->([(x+2)/9]^3,y) = [(x*2 + 4x + 3)(x + 2)/729, y) = [(x^3 + 2x^2 + 4x^2 + 8x + 3x + 6)/729,y]
= ([x^3 + 6x^2 + 11x + 6]/[729],y)
T^-1(x,y) ---> ([(x+2)/9]^-1,y] = [(9/(x+2),y}
The transform is a map from (x,y) to (x,y)
So y gets transformed to y and 9x to x + 2
T^3(x,y) --->([(x+2)/9]^3,y) = [(x*2 + 4x + 3)(x + 2)/729, y) = [(x^3 + 2x^2 + 4x^2 + 8x + 3x + 6)/729,y]
= ([x^3 + 6x^2 + 11x + 6]/[729],y)
T^-1(x,y) ---> ([(x+2)/9]^-1,y] = [(9/(x+2),y}