Prove the trig identity.
cos(A + B)/cos(A - B) = [1 - tanA*tanB]/[1 + tanA*tanB]
cos(A + B)/cos(A - B) = [1 - tanA*tanB]/[1 + tanA*tanB]
-
RHS =
[1 - tanA.tanB]/[1 + tanA.tanB]
[1 - sinA.sinB/cosA.cosB] / [1+sinA.sinB/cosA.cosB]
(cosA.cosB - sinA.sinB) (cosA.cosB + sinA.sinB)
----------------------------- / ------------------------------
......... cosA.cosB ....................... cosA.cosB
(cosA.cosB - sinA.sinB) / (cosA.cosB + sinA.sinB)
cos(A+B)/cos(A-B)
------------------------
[1 - tanA.tanB]/[1 + tanA.tanB]
[1 - sinA.sinB/cosA.cosB] / [1+sinA.sinB/cosA.cosB]
(cosA.cosB - sinA.sinB) (cosA.cosB + sinA.sinB)
----------------------------- / ------------------------------
......... cosA.cosB ....................... cosA.cosB
(cosA.cosB - sinA.sinB) / (cosA.cosB + sinA.sinB)
cos(A+B)/cos(A-B)
------------------------