(A) 8/9 (B) 9/8 (C) 4/9 (D) -9/4
Please explain.
Please explain.
-
x^2-(p+3)x+3p-p+px = 0
x^2-3x+2p = 0
b^2 = 4ac for equal roots
9 = 8p
p = 9/8
Answer (B)
x^2-3x+2p = 0
b^2 = 4ac for equal roots
9 = 8p
p = 9/8
Answer (B)
-
B 9/8
Expand (x - 3)(x - p) = x^2 -3x- px +3p
Expand p(1 - x) = p - px
Equate these two x^2 -3x- px +3p = p - px
x^2 -3x -px +3p -p +px =0
x^2 -3x +2p = 0
This equals (x-k)^2
so k^2 = 2p and -2k = -3 so k = 3/2 therefore 9/4 =2p so p=9/8
Expand (x - 3)(x - p) = x^2 -3x- px +3p
Expand p(1 - x) = p - px
Equate these two x^2 -3x- px +3p = p - px
x^2 -3x -px +3p -p +px =0
x^2 -3x +2p = 0
This equals (x-k)^2
so k^2 = 2p and -2k = -3 so k = 3/2 therefore 9/4 =2p so p=9/8
-
x^2 -px - 3x + 3p = p - px
x^2 -3x + 3p = 0
x = [- b + or - square root(b^2 -4*a*c)]/2a
If roots are equal then (b^2 - 4*a*c must = 0
if roots are equal then (-3)^2 = 4*1*3p
9 = 12p
p = 3/4
x^2 -3x + 3p = 0
x = [- b + or - square root(b^2 -4*a*c)]/2a
If roots are equal then (b^2 - 4*a*c must = 0
if roots are equal then (-3)^2 = 4*1*3p
9 = 12p
p = 3/4