Please show work. I will choose a best answer!
-
f'(x) = tan(x) , -pi/2 < x < pi/2 , f(pi/3) = ln(6)
First off, if f'(x) = tan(x), it follows that
f(x) = Integral ( tan(x) dx )
We can solve this using substitution, since
f(x) = Integral ( sin(x)/cos(x) dx )
f(x) = Integral ( 1/cos(x) sin(x) dx )
Let u = cos(x). That means
du = -sin(x) dx, so
(-1) du = sin(x) dx
Apply your substitution.
f(x) = Integral ( 1/u (-1) du )
f(x) = (-1) Integral ( (1/u) du )
f(x) = (-1) ln|u| + C
Back-substitute.
f(x) = (-1) ln|cos(x)| + C
f(x) = ln| [cos(x)]^(-1)] | + C
f(x) = ln|sec(x)| + C
Since we are given f(pi/3) = ln(6), we can actually solve for C.
f(pi/3) = ln|sec(pi/3) + C = ln(6)
ln|sec(pi/3)| + C = ln(6)
ln|1/cos(pi/3)| + C = ln(6)
ln|1/(1/2)| + C = ln(6)
ln(2) + C = ln(6)
C = ln(6) - ln(2)
C = ln(6/2)
C = ln(3)
So now we have our function.
f(x) = ln|sec(x)| + ln(6)
And can easily calculate f(pi/4).
f(pi/4) = ln|sec(pi/4)| + ln(6)
f(pi/4) = ln|1/[1/sqrt(2)]| + ln(6)
f(pi/4) = ln|sqrt(2)| + ln(6)
f(pi/4) = ln|6sqrt(2)|
First off, if f'(x) = tan(x), it follows that
f(x) = Integral ( tan(x) dx )
We can solve this using substitution, since
f(x) = Integral ( sin(x)/cos(x) dx )
f(x) = Integral ( 1/cos(x) sin(x) dx )
Let u = cos(x). That means
du = -sin(x) dx, so
(-1) du = sin(x) dx
Apply your substitution.
f(x) = Integral ( 1/u (-1) du )
f(x) = (-1) Integral ( (1/u) du )
f(x) = (-1) ln|u| + C
Back-substitute.
f(x) = (-1) ln|cos(x)| + C
f(x) = ln| [cos(x)]^(-1)] | + C
f(x) = ln|sec(x)| + C
Since we are given f(pi/3) = ln(6), we can actually solve for C.
f(pi/3) = ln|sec(pi/3) + C = ln(6)
ln|sec(pi/3)| + C = ln(6)
ln|1/cos(pi/3)| + C = ln(6)
ln|1/(1/2)| + C = ln(6)
ln(2) + C = ln(6)
C = ln(6) - ln(2)
C = ln(6/2)
C = ln(3)
So now we have our function.
f(x) = ln|sec(x)| + ln(6)
And can easily calculate f(pi/4).
f(pi/4) = ln|sec(pi/4)| + ln(6)
f(pi/4) = ln|1/[1/sqrt(2)]| + ln(6)
f(pi/4) = ln|sqrt(2)| + ln(6)
f(pi/4) = ln|6sqrt(2)|
-
Honestly i have no clue, but i bet the guys at confusinghomework.com could help you out. They show work and the best part is its FREE!!!