Use the Double-Angle Identity to find the exact value for cos 2x given sinx= square root of 2/4
-
If sin x = sqrt(2) / 4, then sin^2 x = 2 / 16 = 1/8
Because cos 2x = 1 - 2 sin^2 x,
cos 2x = 1 - 2(1/8)
= 1 - 1/4
= 3/4
Because cos 2x = 1 - 2 sin^2 x,
cos 2x = 1 - 2(1/8)
= 1 - 1/4
= 3/4
-
Is that sinx = √(2/4) or sinx = (√2)/4
For sin(x) = √2/4 = (√2)/4
cos(2x) = 1 - 2sin²x
. . . . . . = 1 - 2((√2)/4)²
. . . . . . = 1 - 2(2/16)
. . . . . . = 1 - 1/4
. . . . . . = 3/4
For sin(x) = √(2/4) = √(1/2)
cos(2x) = 1 - 2sin²x
. . . . . . = 1 - 2(√(1/2)²
. . . . . . = 1 - 2(1/2)
. . . . . . = 1 - 1
. . . . . . = 0
For sin(x) = √2/4 = (√2)/4
cos(2x) = 1 - 2sin²x
. . . . . . = 1 - 2((√2)/4)²
. . . . . . = 1 - 2(2/16)
. . . . . . = 1 - 1/4
. . . . . . = 3/4
For sin(x) = √(2/4) = √(1/2)
cos(2x) = 1 - 2sin²x
. . . . . . = 1 - 2(√(1/2)²
. . . . . . = 1 - 2(1/2)
. . . . . . = 1 - 1
. . . . . . = 0
-
1 - cos(2x) = 2 *(sin(x))^2
cos(2x) = 1 - 2 *sqrt (2)/4 = 1-1/sqrt(2)
We found this without taking care about x itself as an angle or so on
cos(2x) = 1 - 2 *sqrt (2)/4 = 1-1/sqrt(2)
We found this without taking care about x itself as an angle or so on