How do you find the integral of (1 over 1-x^2)
Favorites|Homepage
Subscriptions | sitemap
HOME > > How do you find the integral of (1 over 1-x^2)

How do you find the integral of (1 over 1-x^2)

[From: ] [author: ] [Date: 12-04-04] [Hit: ]
......
I know it must be pretty basic, but iv just gone blank for the moment

Trig substitution perhaps?

-
Yes, use trig substitution:

x = sinu
dx = cosu du

∫ 1 / (1 − x²) dx
= ∫ 1 / (1 − sin²u) * cosu du
= ∫ 1/cos²u * cosu du
= ∫ 1/cosu du
= ∫ secu du
= ln|tanu + secu| + C

Now we substitute back:
sinu = x
cosu = √(1−sin²u) = √(1−x²)
tanu = x/√(1−x²)
secu = 1/√(1−x²)

∫ 1 / (1 − x²) dx
= ln |x/√(1−x²) + 1/√(1−x²) | + C
= ln |x + 1| − ln (√(1−x²)) + C
= ln |x + 1| − 1/2 ln |1−x²| + C
1
keywords: of,find,you,integral,How,do,over,the,How do you find the integral of (1 over 1-x^2)
New
Hot
© 2008-2010 http://www.science-mathematics.com . Program by zplan cms. Theme by wukong .