(1+cosx)y'=(1+e^-y)sinx y(0)=0
-
(1+cosx)y'=(1+e^-y)sinx y(0)=0
1/(1+e^-y) dy = sinx/(1+cosx) dx...rewrite the left side, multiplying by e^y/e^y
e^y/(e^y+1) dy = sinx/(1+cosx) dx
Ln(e^y+1)= -ln(1+cosx ) + C
At (0,0) ln(2)= -ln(2)+ C
C= 2ln2= ln4
Then ln(e^y+1) = ln4- ln(1+cosx)= ln[ 4/(1+cosx)]
e^y+1= 4/(1+cosx)
e^y= 4/(1+cosx) -1
Y= ln[ 4/(1+cosx) -1]
hoping this helps!
1/(1+e^-y) dy = sinx/(1+cosx) dx...rewrite the left side, multiplying by e^y/e^y
e^y/(e^y+1) dy = sinx/(1+cosx) dx
Ln(e^y+1)= -ln(1+cosx ) + C
At (0,0) ln(2)= -ln(2)+ C
C= 2ln2= ln4
Then ln(e^y+1) = ln4- ln(1+cosx)= ln[ 4/(1+cosx)]
e^y+1= 4/(1+cosx)
e^y= 4/(1+cosx) -1
Y= ln[ 4/(1+cosx) -1]
hoping this helps!