how can I find values of θ in the interval 0 to 360 degrees
12cos^2θ + cosθ - 6 = 0 ?
12cos^2θ + cosθ - 6 = 0 ?
-
Given 12cos^2(θ) + cos(θ) - 6 = 0 let x = cos(θ):
12x^2 + x - 6 = 0
Factor the quadratic:
(3x - 2)(4x + 3) = 0
Solve for x:
x = 2/3 or x = -3/4
Substitute x back into x = cos(θ):
cos(θ) = 2/3
or
cos(θ) = -3/4
cos(θ) = 2/3 when θ = 48.1896851 or when θ = 311.8103149
To find 311.8103149 just subtract the first answer (the answer the calculator would give you) from 360.
cos(θ) = -3/4 when θ = 138.5903779 or θ = 221.4096221.
Again to find 221.4096221 subtract the first answer, 138.5903779, from 360.
12x^2 + x - 6 = 0
Factor the quadratic:
(3x - 2)(4x + 3) = 0
Solve for x:
x = 2/3 or x = -3/4
Substitute x back into x = cos(θ):
cos(θ) = 2/3
or
cos(θ) = -3/4
cos(θ) = 2/3 when θ = 48.1896851 or when θ = 311.8103149
To find 311.8103149 just subtract the first answer (the answer the calculator would give you) from 360.
cos(θ) = -3/4 when θ = 138.5903779 or θ = 221.4096221.
Again to find 221.4096221 subtract the first answer, 138.5903779, from 360.
-
Let p=cosθ. Then 12p^2 + p - 6 = 0, so:
p = (-1 +/- squareroot(1^2-4(12)(-6)))/(2*12)
= (-1 +/- 17)/24 = 2/3 or -3/4
If p=cosθ = 2/3, then θ=cos^-1(2/3) or 360-cos^-1(2/3). Similarly for p=3/4. See this sketch to understand where each pair of solutions comes from: http://www.wolframalpha.com/input/?i=plo…
p = (-1 +/- squareroot(1^2-4(12)(-6)))/(2*12)
= (-1 +/- 17)/24 = 2/3 or -3/4
If p=cosθ = 2/3, then θ=cos^-1(2/3) or 360-cos^-1(2/3). Similarly for p=3/4. See this sketch to understand where each pair of solutions comes from: http://www.wolframalpha.com/input/?i=plo…
-
Treat cosθ as a variable for now; let cosθ = x
12x^2 + x - 6 = 0
I used an online calculator to solve for x:
x = -3/4, 2/3
cosθ = -3/4 or cosθ = 2/3.
θ = cos^-1(-3/4) or θ = cos^-1(2/3).
12x^2 + x - 6 = 0
I used an online calculator to solve for x:
x = -3/4, 2/3
cosθ = -3/4 or cosθ = 2/3.
θ = cos^-1(-3/4) or θ = cos^-1(2/3).
-
theta = 2 (pi n-tan^(-1)(1/sqrt(5), n element Z
~Kevin.
~Kevin.
-
(3cosθ -2 )(4cosθ + 3) = 0
cosθ = ⅔ or cosθ = -¾
48.2°, 311.8° or 138.6°. 221.4°
cosθ = ⅔ or cosθ = -¾
48.2°, 311.8° or 138.6°. 221.4°