the same can be expressed in much better form as:n = [ln|y| - ln|y - Gr|]/[ln|1 + r|]-G=y*(1-(1+r)^-n)/r orG*r = y*(1-(1+r)^-n) or{(G*r)/y} = 1 - (1+r)^-n or(1+r)^-n = 1 - {(G*r)/y}or(1+r)^n = 1/[1 - {(G*r)/y}] orn*ln(1+r) = ln1 -ln[1 - {(G*r)/y}] orn = -ln[1 - {(G*r)/y}]/{ln(1+r)}There is some slip of error in the expression given as answer.-yust proceed step by step !......
Now y/(y-Gr) = [(y-Gr)/y]^-1, and the log of a power = the power times the log.
n = -ln [(y-Gr)/y]/ln (1+r)
Also, y-Gr = -(Gr-y)
n = -ln [-(Gr-y)/y]/ln (1+r)
QED