y = 2/3e^-2x + 1 (the 1 is not in the denominator)
lim y
x -> ∞ = ?
lim y
x -> -∞ = ?
y=2/3e^-2x + 1 <-- is it possible to rearrange this into index form and substitute the values in? So,
y = 2.(3e^-2x)-1 + 1?
lim y
x -> ∞ = ?
lim y
x -> -∞ = ?
y=2/3e^-2x + 1 <-- is it possible to rearrange this into index form and substitute the values in? So,
y = 2.(3e^-2x)-1 + 1?
-
lim y
x -> ∞ = ?
The first term is the equivalent of 1/∞ which is zero, so y -> 1
lim y
x -> -∞ = ?
Now your undoing the negative sign so you get e^∞. So y -> ∞
x -> ∞ = ?
The first term is the equivalent of 1/∞ which is zero, so y -> 1
lim y
x -> -∞ = ?
Now your undoing the negative sign so you get e^∞. So y -> ∞
-
62 = x
-
1 for both
-
x = 62, and No