Prove that (log_a X)/(log_ab X) = 1 + log_a b
Favorites|Homepage
Subscriptions | sitemap
HOME > > Prove that (log_a X)/(log_ab X) = 1 + log_a b

Prove that (log_a X)/(log_ab X) = 1 + log_a b

[From: ] [author: ] [Date: 12-01-02] [Hit: ]
......
prove that (log_a X)/(log_ab X) = 1 + log_a b
thank you!
im fallin a bit behind in math and i dont understand change of base?

-
Use change of base formula,
(log_a X)/(log_ab X)
= (lnX/lna)/(lnX/lnab)
= lnab/lna
= 1 + lnb/lna
= 1 + log_a b

-
log_a (x)=ln x/ ln a--------------------1

log_ab (x)=ln x/ln(ab)----------------2

1 divided by 2,

log_a (x)/log_ab (x)=ln(ab)/ln(a)

=[ln a+ ln b]/ln a

=1+(ln b/ ln a)

=1+log_a (b)

Using the property, log_a (b)= ln b/ ln a

where ln=log base e
1
keywords: that,log,Prove,ab,Prove that (log_a X)/(log_ab X) = 1 + log_a b
New
Hot
© 2008-2010 http://www.science-mathematics.com . Program by zplan cms. Theme by wukong .