for example: x=1+y-y^2
please explain, Thank you
please explain, Thank you
-
——————————————————————————————————————
x = 1+y-y²
x = -y²+y+1 ← standard form ... a= -1, b= +1, c= +1
y = -b/(2a) = -1/(2(-1)) = ½ ← y-coordinate of the vertex
x = (4ac-b²)/(4a) = ?
Note ... Consider this:
4ac-b² 4ac b² b²
——— = ——– − ——— = c − —— = c − (ᵇ∕₂ₐ)(ᵇ∕₂) OR -(ᵇ∕₂ₐ)(ᵇ∕₂)+c
4a 4a 4a 4a
So, the second coordinate of the vertex (the x-coordinate for this parabola)
can be determined by taking the y-coordinate (i.e. -(ᵇ∕₂ₐ)) and multiplying
it by (ᵇ∕₂) and then adding c.
So,
x-coordinate of this vertex = -(ᵇ∕₂ₐ)(ᵇ∕₂)+c = (½)(½)+1 = ⁵∕₄
ANSWER
V(⁵∕₄,½)
Hope you found this useful.
Have a good one!
——————————————————————————————————————
x = 1+y-y²
x = -y²+y+1 ← standard form ... a= -1, b= +1, c= +1
y = -b/(2a) = -1/(2(-1)) = ½ ← y-coordinate of the vertex
x = (4ac-b²)/(4a) = ?
Note ... Consider this:
4ac-b² 4ac b² b²
——— = ——– − ——— = c − —— = c − (ᵇ∕₂ₐ)(ᵇ∕₂) OR -(ᵇ∕₂ₐ)(ᵇ∕₂)+c
4a 4a 4a 4a
So, the second coordinate of the vertex (the x-coordinate for this parabola)
can be determined by taking the y-coordinate (i.e. -(ᵇ∕₂ₐ)) and multiplying
it by (ᵇ∕₂) and then adding c.
So,
x-coordinate of this vertex = -(ᵇ∕₂ₐ)(ᵇ∕₂)+c = (½)(½)+1 = ⁵∕₄
ANSWER
V(⁵∕₄,½)
Hope you found this useful.
Have a good one!
——————————————————————————————————————
-
It's similar, except that the y-coordinate can be found via -b/(2a) and the x-coordinate can be found by (4ac - b^2)/(4a).
So, with x = 1 + y - y^2 = (-1)y^2 + y + 1, we see that:
a = -1, b = 1, and c = 1.
Hence, the required vertex is:
((4ac - b^2)/(4a), -b/(2a)) = ([4(1)(-1) - 1^2]/[4(-1)], -1/[2(-1)])
= ((-4 - 1)/(-4), 1/2)
= (5/4, 1/2).
I hope this helps!
So, with x = 1 + y - y^2 = (-1)y^2 + y + 1, we see that:
a = -1, b = 1, and c = 1.
Hence, the required vertex is:
((4ac - b^2)/(4a), -b/(2a)) = ([4(1)(-1) - 1^2]/[4(-1)], -1/[2(-1)])
= ((-4 - 1)/(-4), 1/2)
= (5/4, 1/2).
I hope this helps!
-
x=1+y-y^2
x-1=-(y²-y)
x-1-.25=-(y²-y+.25)
x-1.25=-(y-.5)² vertex (1.25, 0.5)
x-1=-(y²-y)
x-1-.25=-(y²-y+.25)
x-1.25=-(y-.5)² vertex (1.25, 0.5)