Express x in terms of a, b, and c :
1. Log x = 1/2 (3 log a + log b) - log c
2. Log x = (log a + log b + log c) / 2
1. Log x = 1/2 (3 log a + log b) - log c
2. Log x = (log a + log b + log c) / 2
-
1) Log x = 1/2 (3 log a + log b) - log c
log x= 3/2 log a +1/2 log b -log c
log x=log a^3/2+ log b^1/2 -log c
Use the logarithm rules
log x=log((a^3/2 * b^1/2)/c)
get rid of log
10^(log x)= 10^(log((a^3/2 * b^1/2)/c))
x=(a^3/2 * b^1/2)/c
2)Log x = (log a + log b + log c) / 2
log x=1/2 log a+ 1/2 log b+1/2 log c
log x=log a^1/2 + log b^1/2 +log c^1/2
Use the product rule
log x= log(a^1/2 * b^1/2 c^1/2)
log x= log ((abc)^1/2)
Get rid of log as above
10^(log x)=10^( log ((abc)^1/2))
x=(abc)^1/2 = sqrt(abc)
log x= 3/2 log a +1/2 log b -log c
log x=log a^3/2+ log b^1/2 -log c
Use the logarithm rules
log x=log((a^3/2 * b^1/2)/c)
get rid of log
10^(log x)= 10^(log((a^3/2 * b^1/2)/c))
x=(a^3/2 * b^1/2)/c
2)Log x = (log a + log b + log c) / 2
log x=1/2 log a+ 1/2 log b+1/2 log c
log x=log a^1/2 + log b^1/2 +log c^1/2
Use the product rule
log x= log(a^1/2 * b^1/2 c^1/2)
log x= log ((abc)^1/2)
Get rid of log as above
10^(log x)=10^( log ((abc)^1/2))
x=(abc)^1/2 = sqrt(abc)
-
here's one way for #1
(use the properties for condensing logarithms...)
log x = 1/2 (3 log a + log b) - log c
=> log x = 1/2 (log a³ + log b) - log c
=> log x = 1/2 log (a³∙b) - log c
=> log x = log √(a³∙b) - log c
=> log x = log [√(a³∙b)/c]
=> x = √(a³∙b)/c
good luck
(use the properties for condensing logarithms...)
log x = 1/2 (3 log a + log b) - log c
=> log x = 1/2 (log a³ + log b) - log c
=> log x = 1/2 log (a³∙b) - log c
=> log x = log √(a³∙b) - log c
=> log x = log [√(a³∙b)/c]
=> x = √(a³∙b)/c
good luck