show that the function,
y(x) = integral (0,x) h(t) sinh(x-t)dt
satisfies the differential equation
y'' - y = h(x)
What are the initial conditions at x=0?
Thanks! :)
y(x) = integral (0,x) h(t) sinh(x-t)dt
satisfies the differential equation
y'' - y = h(x)
What are the initial conditions at x=0?
Thanks! :)
-
Let y(x) = ∫(t = 0 to x) h(t) sinh(x - t) dt.
Differentiating under the integral sign yields
y' = h(x) sinh(x - x) + ∫(t = 0 to x) (∂/∂x) h(t) sinh(x - t) dt
....= ∫(t = 0 to x) h(t) cosh(x - t) dt
y'' = h(x) cosh(x - x) + ∫(t = 0 to x) (∂/∂x) h(t) cosh(x - t) dt
....= h(x) + ∫(t = 0 to x) h(t) sinh(x - t) dt.
Hence, y'' - y = h(t), as required.
Link:
http://en.wikipedia.org/wiki/Differentia…
-------------------
At x = 0, y(0) = ∫(t = 0 to 0) h(t) sinh(x - t) dt = 0.
I hope this helps!
Differentiating under the integral sign yields
y' = h(x) sinh(x - x) + ∫(t = 0 to x) (∂/∂x) h(t) sinh(x - t) dt
....= ∫(t = 0 to x) h(t) cosh(x - t) dt
y'' = h(x) cosh(x - x) + ∫(t = 0 to x) (∂/∂x) h(t) cosh(x - t) dt
....= h(x) + ∫(t = 0 to x) h(t) sinh(x - t) dt.
Hence, y'' - y = h(t), as required.
Link:
http://en.wikipedia.org/wiki/Differentia…
-------------------
At x = 0, y(0) = ∫(t = 0 to 0) h(t) sinh(x - t) dt = 0.
I hope this helps!