Let
f(x) = sum( n=1 to inf, n(n+1) x^(n-1) ).
Integrate twice,
integral(f(x)) = sum( n=1 to inf, (n+1) x^n )
integral( integral(f(x)) ) = sum( n=1 to inf, x^(n+1) ) = x/(1-x).
Differentiate twice,
f(x) = [x/(1-x)]'' = [1/(1-x)^2]' = 2 / (1-x)^3.
Finally, (sigma n=1 to infinity) n(n+1)(x^n) = x*f(x) = 2x / (1-x)^3.
f(x) = sum( n=1 to inf, n(n+1) x^(n-1) ).
Integrate twice,
integral(f(x)) = sum( n=1 to inf, (n+1) x^n )
integral( integral(f(x)) ) = sum( n=1 to inf, x^(n+1) ) = x/(1-x).
Differentiate twice,
f(x) = [x/(1-x)]'' = [1/(1-x)^2]' = 2 / (1-x)^3.
Finally, (sigma n=1 to infinity) n(n+1)(x^n) = x*f(x) = 2x / (1-x)^3.