3x +12 3x^2 - 16 + 20
----------- * ------------------
2x^2 - 32 3x^2 + 5 -50
----------- * ------------------
2x^2 - 32 3x^2 + 5 -50
-
I assume the 16 is actually a 16x and the 5 is actually a 5x:
((3x + 12) / (2x^2 - 32)) * ((3x^2 - 16x + 20) / (3x^2 + 5 - 50))
Factor all of the terms:
((3(x + 4)) / (2(x + 4)(x - 4))) * ((3x - 10)(x - 2)) / ((3x - 10)(x + 5)))
Cancel out the terms on their respective sides:
((3) / (2(x - 4))) * ((x - 2) / (x + 5))
Now multiply by going straight across the top and bottom:
The solution is: 3(x - 2) / 2(x - 4)(x + 5), or expanded: (3x - 6) / (2x^2 + 2x - 40)
((3x + 12) / (2x^2 - 32)) * ((3x^2 - 16x + 20) / (3x^2 + 5 - 50))
Factor all of the terms:
((3(x + 4)) / (2(x + 4)(x - 4))) * ((3x - 10)(x - 2)) / ((3x - 10)(x + 5)))
Cancel out the terms on their respective sides:
((3) / (2(x - 4))) * ((x - 2) / (x + 5))
Now multiply by going straight across the top and bottom:
The solution is: 3(x - 2) / 2(x - 4)(x + 5), or expanded: (3x - 6) / (2x^2 + 2x - 40)