Use the conjugate.
lim(x→a) [√(3t+1) - √(3a+1)] / (t - a)
= lim(x→a) [√(3t+1) - √(3a+1)] * [√(3t+1) + √(3a+1)] / {(t - a) [√(3t+1) + √(3a+1)]}
= lim(x→a) [(3t+1) - (3a+1)] / {(t - a) [√(3t+1) + √(3a+1)]}
= lim(x→a) 3(t - a) / {(t - a) [√(3t+1) + √(3a+1)]}
= lim(x→a) 3 / [√(3t+1) + √(3a+1)]
= 3 / [√(3a+1) + √(3a+1)]
= 3 / [2√(3a+1)].
I hope this helps!
lim(x→a) [√(3t+1) - √(3a+1)] / (t - a)
= lim(x→a) [√(3t+1) - √(3a+1)] * [√(3t+1) + √(3a+1)] / {(t - a) [√(3t+1) + √(3a+1)]}
= lim(x→a) [(3t+1) - (3a+1)] / {(t - a) [√(3t+1) + √(3a+1)]}
= lim(x→a) 3(t - a) / {(t - a) [√(3t+1) + √(3a+1)]}
= lim(x→a) 3 / [√(3t+1) + √(3a+1)]
= 3 / [√(3a+1) + √(3a+1)]
= 3 / [2√(3a+1)].
I hope this helps!