∫ (5e^x) / (3+e^x)
-
Let u = 3 + e^x → du = e^x dx
.. 5 ∫ [ e^x / (3+e^x) ] dx
= 5 ∫ ( 1 / u ) du
= 5 ln(u) + constant
= 5 ln(3 + e^x) + constant
.. 5 ∫ [ e^x / (3+e^x) ] dx
= 5 ∫ ( 1 / u ) du
= 5 ln(u) + constant
= 5 ln(3 + e^x) + constant
-
∫ (5e^x) / (3+e^x)
set: 3 + e^x = t --> e^x.dx = dt
integral <=> ∫ 5dt/t = 5.ln/t/
ok
any questions : bmt.kurua@yahoo.com
set: 3 + e^x = t --> e^x.dx = dt
integral <=> ∫ 5dt/t = 5.ln/t/
ok
any questions : bmt.kurua@yahoo.com
-
∫ (5e^x) / (3+e^x) = 5 ∫ (e^x) / (3+e^x) = 5 ln (3+ e^x) + constant
since ∫ u'/u = ln (u)
since ∫ u'/u = ln (u)