Decided weather the statement is TRUE or FALSE, rewrite the right-hand side of the equation so the statement is true.
1. 4(2+7) = 4(2) + 7
2. (5+3)8 = 5(3) + 5(8)
3. 12(9 - 5) = 12(9) - 12(5)
4. (16 - 8) (4) = 16 - 8(4)
5. 16(x + 10) = 16x + 10
6. -4(t - 12) = -4t - (-4)(12)
Use the distributive property to rewrite the expression without parentheses.
7. 8(x + 5)
8. 4(y - 7)
9. (t - 4)(2)
10. -6(r - 1)
11. (m - 7)(-3)
12. -12(3 +n)
13. (6)(x +3)
14. (-8)(a + 3)
15. (2x + 1)(5)
16. (6b - 2)(3)
17. (-3)(-x - 2)
18. (2 - 3y)(-2)
1. 4(2+7) = 4(2) + 7
2. (5+3)8 = 5(3) + 5(8)
3. 12(9 - 5) = 12(9) - 12(5)
4. (16 - 8) (4) = 16 - 8(4)
5. 16(x + 10) = 16x + 10
6. -4(t - 12) = -4t - (-4)(12)
Use the distributive property to rewrite the expression without parentheses.
7. 8(x + 5)
8. 4(y - 7)
9. (t - 4)(2)
10. -6(r - 1)
11. (m - 7)(-3)
12. -12(3 +n)
13. (6)(x +3)
14. (-8)(a + 3)
15. (2x + 1)(5)
16. (6b - 2)(3)
17. (-3)(-x - 2)
18. (2 - 3y)(-2)
-
F 1. 4(2+7) = 4(2) + 7 -->4(2)+ 4(7)
F 2. (5+3)8 = 5(3) + 5(8) -->5(8)+3(8)
T 3. 12(9 - 5) = 12(9) - 12(5)
F 4. (16 - 8) (4) = 16 - 8(4) --> 16(4)-8(4)
F 5. 16(x + 10) = 16x + 10 -->16x + 16(10)
T 6. -4(t - 12) = -4t - (-4)(12)
7. 8(x + 5) = 8x+40
8. 4(y - 7) = 4y-28
9. (t - 4)(2) = 2t-8
10. -6(r - 1) = -6r+6
11. (m - 7)(-3) = -3m+21
12. -12(3 +n) = -36-12n
13. (6)(x +3) = 6x+18
14. (-8)(a + 3) = -8a-24
15. (2x + 1)(5) = 10x+5
16. (6b - 2)(3) = 18b-6
17. (-3)(-x - 2) = 3x+6
18. (2 - 3y)(-2) = -4+6y
study!
F 2. (5+3)8 = 5(3) + 5(8) -->5(8)+3(8)
T 3. 12(9 - 5) = 12(9) - 12(5)
F 4. (16 - 8) (4) = 16 - 8(4) --> 16(4)-8(4)
F 5. 16(x + 10) = 16x + 10 -->16x + 16(10)
T 6. -4(t - 12) = -4t - (-4)(12)
7. 8(x + 5) = 8x+40
8. 4(y - 7) = 4y-28
9. (t - 4)(2) = 2t-8
10. -6(r - 1) = -6r+6
11. (m - 7)(-3) = -3m+21
12. -12(3 +n) = -36-12n
13. (6)(x +3) = 6x+18
14. (-8)(a + 3) = -8a-24
15. (2x + 1)(5) = 10x+5
16. (6b - 2)(3) = 18b-6
17. (-3)(-x - 2) = 3x+6
18. (2 - 3y)(-2) = -4+6y
study!
-
first set of problems:
calculate the values inside the brackets first, before multiplying by terms outside the brackets
first question left side: 4(2 + 7) = 4 * 9 = 36
first question right side: 4*2 + 7 = 15 therefore it is false, and the right hand side should read 36 to make it true
second set of problems:
multiply each term in the brackets by the value outside of the brackets and add all the terms together
8(x + 5) = 8x + 8*5 = 8x + 40
and so on
calculate the values inside the brackets first, before multiplying by terms outside the brackets
first question left side: 4(2 + 7) = 4 * 9 = 36
first question right side: 4*2 + 7 = 15 therefore it is false, and the right hand side should read 36 to make it true
second set of problems:
multiply each term in the brackets by the value outside of the brackets and add all the terms together
8(x + 5) = 8x + 8*5 = 8x + 40
and so on
-
What the heck? Do you want us to do your English paper too?