int 2L *sqrt(r^2 -(x-r)^2) dx
from 0 to 2r
from 0 to 2r
-
I = 2L ∫ [ 0, 2r ] √[ r² - (x-r)² ] dx ......... (1)
_________________________
Let : u = x - r. ∴ du = dx.
Also :
x = 0 ⇒ u = 0 - r = -r
x = 2r ⇒ u = 2r - r = r.
___________________________
From (1), then,
I = 2L ∫ [ -r, r ] √( r² - u² ) du
= 2L • 2 ∫ [ 0, r ] √( r² - u² ) du
= 2L • 2 • (1/2) [ u.√(r²-u²) + r². sin ֿ¹ (u/r) ] ... on [ 0, r ]
= 2L • [ ( 0 + r². sin ֿ¹ (1) ) - ( 0 + r². sin ֿ¹ (0) ) ]
= 2L • [ r². ( π/2 ) - (0) ]
= π r² L ........................................… Ans.
_______________________
Happy To Help !
_______________________
_________________________
Let : u = x - r. ∴ du = dx.
Also :
x = 0 ⇒ u = 0 - r = -r
x = 2r ⇒ u = 2r - r = r.
___________________________
From (1), then,
I = 2L ∫ [ -r, r ] √( r² - u² ) du
= 2L • 2 ∫ [ 0, r ] √( r² - u² ) du
= 2L • 2 • (1/2) [ u.√(r²-u²) + r². sin ֿ¹ (u/r) ] ... on [ 0, r ]
= 2L • [ ( 0 + r². sin ֿ¹ (1) ) - ( 0 + r². sin ֿ¹ (0) ) ]
= 2L • [ r². ( π/2 ) - (0) ]
= π r² L ........................................… Ans.
_______________________
Happy To Help !
_______________________