let sin(t)=a,cos(t)=b, and tan(t)=c
5sin(-t)-sin(t) Simplify
5sin(-t)-sin(t) Simplify
-
sin(-a) =-sina
-5sint-sint=-5a-a=-6a
-5sint-sint=-5a-a=-6a
-
sin(-t)=-sin(t)
therefore
5sin(-t)-sin(t)=-6sin(t)=-6a
sin(t) = sqrt(1-cos(t)^2)
therefore
5sin(-t)-sin(t)= -6 sqrt(1-b^2)
also 1/cos(t)^2 =1+tan(t)^2)
therefore
5sin(-t)-sin(t)=-6sin(t)=-6a
sin(t) = sqrt(1-cos(t)^2)
therefore
5sin(-t)-sin(t)= -6 sqrt(1-b^2)
also 1/cos(t)^2 =1+tan(t)^2)
-
5 sin(-t) - sin(t)
= -5 sin(t) - sin (t)
= -6 sin (t)
= -6a
so whats the need of cos(t) and tan (t) ???
tan (t) = sin(t) / cos (t)
c=a/b
a=bc
so in other way
5 sin(-t) - sin(t)
= -6a
= -6bc
= -5 sin(t) - sin (t)
= -6 sin (t)
= -6a
so whats the need of cos(t) and tan (t) ???
tan (t) = sin(t) / cos (t)
c=a/b
a=bc
so in other way
5 sin(-t) - sin(t)
= -6a
= -6bc