integral (xe^(2x) / (2x+1)^2)
-
To integrate ∫ x*e^(2x)/(2x + 1)^2 dx, note that:
∫ x*e^(2x)/(2x + 1)^2 dx
= 1/2 ∫ 2x*e^(2x)/(2x + 1)^2 dx
= 1/2 ∫ [(2x + 1) - 1]e^(2x)/(2x + 1)^2 dx
= 1/2 ∫ [1/(2x + 1) - 1/(2x + 1)^2]e^(2x) dx
= 1/2 ∫ [e^(2x)/(2x + 1) - e^(2x)/(2x + 1)^2] dx
= 1/2 ∫ e^(2x)/(2x + 1) dx - 1/2 ∫ e^(2x)/(2x + 1)^2 dx.
Then, integrate ∫ e^(2x)/(2x + 1) dx by parts with:
u = 1/(2x + 1) ==> du = -2/(2x + 1)^2 dx
dv = e^(2x) dx ==> v = (1/2)e^(2x).
This gives:
∫ e^(2x)/(2x + 1) dx = uv - ∫ v du
= e^(2x)/[2(2x + 1)] - ∫ -e^(2x)/(2x + 1)^2 dx
= e^(2x)/[2(2x + 1)] + ∫ e^(2x)/(2x + 1)^2 dx
Therefore:
∫ x*e^(2x)/(2x + 1)^2 dx
= 1/2 ∫ e^(2x)/(2x + 1) dx - 1/2 ∫ e^(2x)/(2x + 1)^2 dx
= e^(2x)/[4(2x + 1)] + 1/2 ∫ e^(2x)/(2x + 1)^2 dx - 1/2 ∫ e^(2x)/(2x + 1)^2 dx
= e^(2x)/[4(2x + 1)] + C.
(Note that the two 1/2 ∫ e^(2x)/(2x + 1)^2 dx's cancel out.)
I hope this helps!
∫ x*e^(2x)/(2x + 1)^2 dx
= 1/2 ∫ 2x*e^(2x)/(2x + 1)^2 dx
= 1/2 ∫ [(2x + 1) - 1]e^(2x)/(2x + 1)^2 dx
= 1/2 ∫ [1/(2x + 1) - 1/(2x + 1)^2]e^(2x) dx
= 1/2 ∫ [e^(2x)/(2x + 1) - e^(2x)/(2x + 1)^2] dx
= 1/2 ∫ e^(2x)/(2x + 1) dx - 1/2 ∫ e^(2x)/(2x + 1)^2 dx.
Then, integrate ∫ e^(2x)/(2x + 1) dx by parts with:
u = 1/(2x + 1) ==> du = -2/(2x + 1)^2 dx
dv = e^(2x) dx ==> v = (1/2)e^(2x).
This gives:
∫ e^(2x)/(2x + 1) dx = uv - ∫ v du
= e^(2x)/[2(2x + 1)] - ∫ -e^(2x)/(2x + 1)^2 dx
= e^(2x)/[2(2x + 1)] + ∫ e^(2x)/(2x + 1)^2 dx
Therefore:
∫ x*e^(2x)/(2x + 1)^2 dx
= 1/2 ∫ e^(2x)/(2x + 1) dx - 1/2 ∫ e^(2x)/(2x + 1)^2 dx
= e^(2x)/[4(2x + 1)] + 1/2 ∫ e^(2x)/(2x + 1)^2 dx - 1/2 ∫ e^(2x)/(2x + 1)^2 dx
= e^(2x)/[4(2x + 1)] + C.
(Note that the two 1/2 ∫ e^(2x)/(2x + 1)^2 dx's cancel out.)
I hope this helps!
-
You're welcome! :)
Report Abuse
-
int(x*exp(2*x)/(2*x+1)^2, x) = (1/4)*exp(2*x)/(2*x + 1)