Represent the function 6ln(3-x) as a MacLaurin series
C0 = _____ C1 =______ C2 = _______ C3=________ C4=_______
Find the radius of convergence R = ______
C0 = _____ C1 =______ C2 = _______ C3=________ C4=_______
Find the radius of convergence R = ______
-
Know ln(1+x)=x-x^2/2+x^3/3-x^4/4....
6ln(3-x)=6(ln(1-x/3) + ln 3)=
6( -x/3 - x^2/2.9-x^3/3.27-x^4/4.81 +ln3)
C0 = 6ln3 C1 = -2 C2 = -1/3 C3= -2/27 C4= -1/54
Radius od convergence
-1<1-x/3<=1
-3<3-x<=3
-6<-x<=0
0>=x<6
6ln(3-x)=6(ln(1-x/3) + ln 3)=
6( -x/3 - x^2/2.9-x^3/3.27-x^4/4.81 +ln3)
C0 = 6ln3 C1 = -2 C2 = -1/3 C3= -2/27 C4= -1/54
Radius od convergence
-1<1-x/3<=1
-3<3-x<=3
-6<-x<=0
0>=x<6